Information on Result #702902
Linear OA(2208, 1068, F2, 40) (dual of [1068, 860, 41]-code), using construction XX applied to C1 = C([985,1022]), C2 = C([991,2]), C3 = C1 + C2 = C([991,1022]), and C∩ = C1 ∩ C2 = C([985,2]) based on
- linear OA(2185, 1023, F2, 38) (dual of [1023, 838, 39]-code), using the primitive BCH-code C(I) with length 1023 = 210−1, defining interval I = {−38,−37,…,−1}, and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(2171, 1023, F2, 35) (dual of [1023, 852, 36]-code), using the primitive BCH-code C(I) with length 1023 = 210−1, defining interval I = {−32,−31,…,2}, and designed minimum distance d ≥ |I|+1 = 36 [i]
- linear OA(2196, 1023, F2, 41) (dual of [1023, 827, 42]-code), using the primitive BCH-code C(I) with length 1023 = 210−1, defining interval I = {−38,−37,…,2}, and designed minimum distance d ≥ |I|+1 = 42 [i]
- linear OA(2160, 1023, F2, 32) (dual of [1023, 863, 33]-code), using the primitive BCH-code C(I) with length 1023 = 210−1, defining interval I = {−32,−31,…,−1}, and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(211, 33, F2, 5) (dual of [33, 22, 6]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 33 | 210−1, defining interval I = [0,2], and minimum distance d ≥ |{−2,−1,0,1,2}|+1 = 6 (BCH-bound) [i]
- linear OA(21, 12, F2, 1) (dual of [12, 11, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.