Information on Result #703037
Linear OA(2258, 1067, F2, 51) (dual of [1067, 809, 52]-code), using construction XX applied to C1 = C([985,10]), C2 = C([991,12]), C3 = C1 + C2 = C([991,10]), and C∩ = C1 ∩ C2 = C([985,12]) based on
- linear OA(2236, 1023, F2, 49) (dual of [1023, 787, 50]-code), using the primitive BCH-code C(I) with length 1023 = 210−1, defining interval I = {−38,−37,…,10}, and designed minimum distance d ≥ |I|+1 = 50 [i]
- linear OA(2221, 1023, F2, 45) (dual of [1023, 802, 46]-code), using the primitive BCH-code C(I) with length 1023 = 210−1, defining interval I = {−32,−31,…,12}, and designed minimum distance d ≥ |I|+1 = 46 [i]
- linear OA(2246, 1023, F2, 51) (dual of [1023, 777, 52]-code), using the primitive BCH-code C(I) with length 1023 = 210−1, defining interval I = {−38,−37,…,12}, and designed minimum distance d ≥ |I|+1 = 52 [i]
- linear OA(2211, 1023, F2, 43) (dual of [1023, 812, 44]-code), using the primitive BCH-code C(I) with length 1023 = 210−1, defining interval I = {−32,−31,…,10}, and designed minimum distance d ≥ |I|+1 = 44 [i]
- linear OA(211, 33, F2, 5) (dual of [33, 22, 6]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 33 | 210−1, defining interval I = [0,2], and minimum distance d ≥ |{−2,−1,0,1,2}|+1 = 6 (BCH-bound) [i]
- linear OA(21, 11, F2, 1) (dual of [11, 10, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.