Information on Result #703138

Linear OA(341, 242, F3, 13) (dual of [242, 201, 14]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−3,−2,…,9}, and designed minimum distance d ≥ |I|+1 = 14

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(341, 125, F3, 2, 13) (dual of [(125, 2), 209, 14]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(341, 125, F3, 3, 13) (dual of [(125, 3), 334, 14]-NRT-code) [i]
3Linear OOA(341, 125, F3, 4, 13) (dual of [(125, 4), 459, 14]-NRT-code) [i]
4Linear OOA(341, 125, F3, 5, 13) (dual of [(125, 5), 584, 14]-NRT-code) [i]
5Digital (28, 41, 125)-net over F3 [i]
6Linear OA(347, 264, F3, 13) (dual of [264, 217, 14]-code) [i]Construction XX with Cyclic Codes
7Linear OA(345, 261, F3, 12) (dual of [261, 216, 13]-code) [i]
8Linear OA(347, 268, F3, 13) (dual of [268, 221, 14]-code) [i]
9Linear OA(345, 266, F3, 12) (dual of [266, 221, 13]-code) [i]
10Linear OA(345, 261, F3, 13) (dual of [261, 216, 14]-code) [i]
11Linear OA(343, 259, F3, 12) (dual of [259, 216, 13]-code) [i]
12Linear OA(349, 260, F3, 14) (dual of [260, 211, 15]-code) [i]
13Linear OA(357, 268, F3, 16) (dual of [268, 211, 17]-code) [i]
14Linear OA(355, 266, F3, 15) (dual of [266, 211, 16]-code) [i]
15Linear OOA(341, 48, F3, 5, 13) (dual of [(48, 5), 199, 14]-NRT-code) [i]OOA Folding