Information on Result #703217

Linear OA(361, 242, F3, 19) (dual of [242, 181, 20]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−3,−2,…,15}, and designed minimum distance d ≥ |I|+1 = 20

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(367, 264, F3, 19) (dual of [264, 197, 20]-code) [i]Construction XX with Cyclic Codes
2Linear OA(365, 261, F3, 18) (dual of [261, 196, 19]-code) [i]
3Linear OA(367, 268, F3, 19) (dual of [268, 201, 20]-code) [i]
4Linear OA(365, 266, F3, 18) (dual of [266, 201, 19]-code) [i]
5Linear OA(365, 261, F3, 19) (dual of [261, 196, 20]-code) [i]
6Linear OA(363, 259, F3, 18) (dual of [259, 196, 19]-code) [i]
7Linear OA(369, 260, F3, 20) (dual of [260, 191, 21]-code) [i]
8Linear OA(377, 268, F3, 22) (dual of [268, 191, 23]-code) [i]
9Linear OA(375, 266, F3, 21) (dual of [266, 191, 22]-code) [i]