Information on Result #703241

Linear OA(361, 252, F3, 18) (dual of [252, 191, 19]-code), using construction XX applied to C1 = C([241,15]), C2 = C([0,16]), C3 = C1 + C2 = C([0,15]), and C∩ = C1 ∩ C2 = C([241,16]) based on
  1. linear OA(356, 242, F3, 17) (dual of [242, 186, 18]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−1,0,…,15}, and designed minimum distance d ≥ |I|+1 = 18 [i]
  2. linear OA(356, 242, F3, 17) (dual of [242, 186, 18]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,16], and designed minimum distance d ≥ |I|+1 = 18 [i]
  3. linear OA(361, 242, F3, 18) (dual of [242, 181, 19]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−1,0,…,16}, and designed minimum distance d ≥ |I|+1 = 19 [i]
  4. linear OA(351, 242, F3, 16) (dual of [242, 191, 17]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,15], and designed minimum distance d ≥ |I|+1 = 17 [i]
  5. linear OA(30, 5, F3, 0) (dual of [5, 5, 1]-code), using
  6. linear OA(30, 5, F3, 0) (dual of [5, 5, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(366, 275, F3, 18) (dual of [275, 209, 19]-code) [i]VarÅ¡amov–Edel Lengthening
2Linear OA(367, 287, F3, 18) (dual of [287, 220, 19]-code) [i]
3Linear OA(368, 302, F3, 18) (dual of [302, 234, 19]-code) [i]
4Linear OOA(361, 126, F3, 2, 18) (dual of [(126, 2), 191, 19]-NRT-code) [i]OOA Folding
5Linear OOA(361, 84, F3, 3, 18) (dual of [(84, 3), 191, 19]-NRT-code) [i]