Information on Result #703313

Linear OA(381, 242, F3, 25) (dual of [242, 161, 26]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−3,−2,…,21}, and designed minimum distance d ≥ |I|+1 = 26

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(387, 264, F3, 25) (dual of [264, 177, 26]-code) [i]Construction XX with Cyclic Codes
2Linear OA(385, 261, F3, 24) (dual of [261, 176, 25]-code) [i]
3Linear OA(387, 268, F3, 25) (dual of [268, 181, 26]-code) [i]
4Linear OA(385, 266, F3, 24) (dual of [266, 181, 25]-code) [i]
5Linear OA(385, 261, F3, 25) (dual of [261, 176, 26]-code) [i]
6Linear OA(383, 259, F3, 24) (dual of [259, 176, 25]-code) [i]
7Linear OA(389, 260, F3, 26) (dual of [260, 171, 27]-code) [i]
8Linear OA(397, 268, F3, 28) (dual of [268, 171, 29]-code) [i]
9Linear OA(395, 266, F3, 27) (dual of [266, 171, 28]-code) [i]