Information on Result #703325
Linear OA(381, 242, F3, 25) (dual of [242, 161, 26]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {97,98,…,121}, and designed minimum distance d ≥ |I|+1 = 26
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive Expurgated Narrow-Sense BCH-Codes [i]
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(393, 269, F3, 26) (dual of [269, 176, 27]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
2 | Linear OA(387, 253, F3, 26) (dual of [253, 166, 27]-code) | [i] | ✔ | |
3 | Linear OA(3104, 265, F3, 32) (dual of [265, 161, 33]-code) | [i] | ✔ | |
4 | Linear OA(3102, 259, F3, 32) (dual of [259, 157, 33]-code) | [i] | ✔ | |
5 | Linear OA(3113, 274, F3, 33) (dual of [274, 161, 34]-code) | [i] | ✔ | |
6 | Linear OA(3111, 269, F3, 33) (dual of [269, 158, 34]-code) | [i] | ✔ | |
7 | Linear OA(3123, 283, F3, 35) (dual of [283, 160, 36]-code) | [i] | ✔ | |
8 | Linear OA(3112, 273, F3, 34) (dual of [273, 161, 35]-code) | [i] | ✔ | |
9 | Linear OA(3110, 271, F3, 33) (dual of [271, 161, 34]-code) | [i] | ✔ | |
10 | Linear OA(3111, 269, F3, 34) (dual of [269, 158, 35]-code) | [i] | ✔ | |
11 | Linear OA(3109, 267, F3, 33) (dual of [267, 158, 34]-code) | [i] | ✔ | |
12 | Linear OA(3110, 267, F3, 34) (dual of [267, 157, 35]-code) | [i] | ✔ | |
13 | Linear OA(3108, 265, F3, 33) (dual of [265, 157, 34]-code) | [i] | ✔ | |
14 | Linear OA(3121, 282, F3, 35) (dual of [282, 161, 36]-code) | [i] | ✔ | |
15 | Linear OA(3119, 277, F3, 35) (dual of [277, 158, 36]-code) | [i] | ✔ | |
16 | Linear OA(3129, 290, F3, 36) (dual of [290, 161, 37]-code) | [i] | ✔ | |
17 | Linear OA(3128, 286, F3, 36) (dual of [286, 158, 37]-code) | [i] | ✔ | |
18 | Linear OA(3127, 283, F3, 36) (dual of [283, 156, 37]-code) | [i] | ✔ | |
19 | Linear OA(3128, 283, F3, 37) (dual of [283, 155, 38]-code) | [i] | ✔ | |
20 | Linear OA(3126, 281, F3, 36) (dual of [281, 155, 37]-code) | [i] | ✔ | |
21 | Linear OA(3119, 280, F3, 35) (dual of [280, 161, 36]-code) | [i] | ✔ | |
22 | Linear OA(3118, 276, F3, 35) (dual of [276, 158, 36]-code) | [i] | ✔ | |
23 | Linear OA(3117, 274, F3, 35) (dual of [274, 157, 36]-code) | [i] | ✔ | |
24 | Linear OA(3128, 289, F3, 36) (dual of [289, 161, 37]-code) | [i] | ✔ | |
25 | Linear OA(3126, 284, F3, 36) (dual of [284, 158, 37]-code) | [i] | ✔ |