Information on Result #703340

Linear OA(391, 242, F3, 28) (dual of [242, 151, 29]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {97,98,…,124}, and designed minimum distance d ≥ |I|+1 = 29

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(3104, 286, F3, 28) (dual of [286, 182, 29]-code) [i]Construction XX with Cyclic Codes
2Linear OA(393, 254, F3, 28) (dual of [254, 161, 29]-code) [i]
3Linear OA(3114, 276, F3, 34) (dual of [276, 162, 35]-code) [i]
4Linear OA(3112, 272, F3, 33) (dual of [272, 160, 34]-code) [i]
5Linear OA(3113, 272, F3, 34) (dual of [272, 159, 35]-code) [i]
6Linear OA(3112, 270, F3, 34) (dual of [270, 158, 35]-code) [i]
7Linear OA(3121, 280, F3, 35) (dual of [280, 159, 36]-code) [i]
8Linear OA(3112, 273, F3, 34) (dual of [273, 161, 35]-code) [i]
9Linear OA(3110, 271, F3, 33) (dual of [271, 161, 34]-code) [i]
10Linear OA(3111, 269, F3, 34) (dual of [269, 158, 35]-code) [i]
11Linear OA(3109, 267, F3, 33) (dual of [267, 158, 34]-code) [i]
12Linear OA(3110, 267, F3, 34) (dual of [267, 157, 35]-code) [i]
13Linear OA(3108, 265, F3, 33) (dual of [265, 157, 34]-code) [i]
14Linear OA(3121, 282, F3, 35) (dual of [282, 161, 36]-code) [i]
15Linear OA(3119, 277, F3, 35) (dual of [277, 158, 36]-code) [i]
16Linear OA(3109, 262, F3, 34) (dual of [262, 153, 35]-code) [i]
17Linear OA(3129, 290, F3, 36) (dual of [290, 161, 37]-code) [i]
18Linear OA(3128, 286, F3, 36) (dual of [286, 158, 37]-code) [i]
19Linear OA(3127, 283, F3, 36) (dual of [283, 156, 37]-code) [i]
20Linear OA(3128, 283, F3, 37) (dual of [283, 155, 38]-code) [i]
21Linear OA(3126, 281, F3, 36) (dual of [281, 155, 37]-code) [i]