Information on Result #703362

Linear OA(396, 242, F3, 32) (dual of [242, 146, 33]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {90,91,…,121}, and designed minimum distance d ≥ |I|+1 = 33

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(3119, 284, F3, 33) (dual of [284, 165, 34]-code) [i]Construction XX with Cyclic Codes
2Linear OA(3118, 283, F3, 33) (dual of [283, 165, 34]-code) [i]
3Linear OA(3115, 275, F3, 33) (dual of [275, 160, 34]-code) [i]
4Linear OA(3113, 274, F3, 33) (dual of [274, 161, 34]-code) [i]
5Linear OA(3111, 269, F3, 33) (dual of [269, 158, 34]-code) [i]
6Linear OA(3126, 291, F3, 35) (dual of [291, 165, 36]-code) [i]
7Linear OA(3109, 265, F3, 33) (dual of [265, 156, 34]-code) [i]
8Linear OA(3121, 282, F3, 35) (dual of [282, 161, 36]-code) [i]
9Linear OA(3119, 277, F3, 35) (dual of [277, 158, 36]-code) [i]
10Linear OA(3117, 273, F3, 35) (dual of [273, 156, 36]-code) [i]
11Linear OA(3116, 269, F3, 35) (dual of [269, 153, 36]-code) [i]
12Linear OA(3128, 289, F3, 36) (dual of [289, 161, 37]-code) [i]
13Linear OA(3126, 284, F3, 36) (dual of [284, 158, 37]-code) [i]
14Linear OA(3107, 253, F3, 35) (dual of [253, 146, 36]-code) [i]
15Linear OA(3114, 260, F3, 36) (dual of [260, 146, 37]-code) [i]
16Linear OA(3124, 270, F3, 39) (dual of [270, 146, 40]-code) [i]
17Linear OA(3136, 282, F3, 41) (dual of [282, 146, 42]-code) [i]
18Linear OA(3135, 278, F3, 41) (dual of [278, 143, 42]-code) [i]
19Linear OA(3132, 278, F3, 41) (dual of [278, 146, 42]-code) [i]
20Linear OA(3139, 285, F3, 42) (dual of [285, 146, 43]-code) [i]