Information on Result #703700

Linear OA(3217, 242, F3, 125) (dual of [242, 25, 126]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−3,−2,…,121}, and designed minimum distance d ≥ |I|+1 = 126

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(3242, 267, F3, 126) (dual of [267, 25, 127]-code) [i]Juxtaposition
2Linear OA(3243, 268, F3, 127) (dual of [268, 25, 128]-code) [i]
3Linear OA(3246, 271, F3, 128) (dual of [271, 25, 129]-code) [i]
4Linear OA(3248, 273, F3, 129) (dual of [273, 25, 130]-code) [i]
5Linear OA(3250, 275, F3, 130) (dual of [275, 25, 131]-code) [i]
6Linear OA(3240, 263, F3, 126) (dual of [263, 23, 127]-code) [i]
7Linear OA(3241, 264, F3, 127) (dual of [264, 23, 128]-code) [i]
8Linear OA(3239, 261, F3, 126) (dual of [261, 22, 127]-code) [i]
9Linear OA(3240, 262, F3, 127) (dual of [262, 22, 128]-code) [i]
10Linear OA(3229, 260, F3, 128) (dual of [260, 31, 129]-code) [i]Construction XX with Cyclic Codes
11Linear OA(3227, 258, F3, 127) (dual of [258, 31, 128]-code) [i]
12Linear OA(3228, 258, F3, 128) (dual of [258, 30, 129]-code) [i]
13Linear OA(3226, 256, F3, 127) (dual of [256, 30, 128]-code) [i]
14Linear OA(3224, 254, F3, 126) (dual of [254, 30, 127]-code) [i]
15Linear OA(3227, 254, F3, 128) (dual of [254, 27, 129]-code) [i]
16Linear OA(3225, 252, F3, 127) (dual of [252, 27, 128]-code) [i]
17Linear OOA(3217, 121, F3, 2, 125) (dual of [(121, 2), 25, 126]-NRT-code) [i]OOA Folding
18Linear OOA(3217, 48, F3, 5, 125) (dual of [(48, 5), 23, 126]-NRT-code) [i]