Information on Result #703708

Linear OA(3222, 242, F3, 131) (dual of [242, 20, 132]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−9,−8,…,121}, and designed minimum distance d ≥ |I|+1 = 132

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(3242, 262, F3, 132) (dual of [262, 20, 133]-code) [i]Juxtaposition
2Linear OA(3243, 263, F3, 133) (dual of [263, 20, 134]-code) [i]
3Linear OA(3241, 260, F3, 132) (dual of [260, 19, 133]-code) [i]
4Linear OA(3242, 261, F3, 133) (dual of [261, 19, 134]-code) [i]
5Linear OA(3245, 264, F3, 134) (dual of [264, 19, 135]-code) [i]
6Linear OA(3242, 273, F3, 133) (dual of [273, 31, 134]-code) [i]Construction XX with Cyclic Codes
7Linear OA(3240, 271, F3, 132) (dual of [271, 31, 133]-code) [i]
8Linear OA(3247, 277, F3, 134) (dual of [277, 30, 135]-code) [i]
9Linear OA(3242, 272, F3, 134) (dual of [272, 30, 135]-code) [i]
10Linear OA(3240, 270, F3, 133) (dual of [270, 30, 134]-code) [i]
11Linear OA(3250, 278, F3, 135) (dual of [278, 28, 136]-code) [i]
12Linear OA(3249, 279, F3, 135) (dual of [279, 30, 136]-code) [i]
13Linear OA(3250, 278, F3, 136) (dual of [278, 28, 137]-code) [i]
14Linear OOA(3222, 121, F3, 2, 131) (dual of [(121, 2), 20, 132]-NRT-code) [i]OOA Folding
15Linear OOA(3222, 48, F3, 5, 131) (dual of [(48, 5), 18, 132]-NRT-code) [i]