Information on Result #703746

Linear OA(3222, 242, F3, 131) (dual of [242, 20, 132]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,130], and designed minimum distance d ≥ |I|+1 = 132

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(3242, 262, F3, 132) (dual of [262, 20, 133]-code) [i]Juxtaposition
2Linear OA(3243, 263, F3, 133) (dual of [263, 20, 134]-code) [i]
3Linear OA(3241, 260, F3, 132) (dual of [260, 19, 133]-code) [i]
4Linear OA(3242, 261, F3, 133) (dual of [261, 19, 134]-code) [i]
5Linear OA(3245, 264, F3, 134) (dual of [264, 19, 135]-code) [i]
6Linear OA(3249, 279, F3, 135) (dual of [279, 30, 136]-code) [i]Construction XX with Cyclic Codes
7Linear OA(3250, 278, F3, 136) (dual of [278, 28, 137]-code) [i]
8Linear OA(3250, 275, F3, 140) (dual of [275, 25, 141]-code) [i]
9Linear OA(3246, 271, F3, 137) (dual of [271, 25, 138]-code) [i]
10Linear OA(3243, 268, F3, 135) (dual of [268, 25, 136]-code) [i]
11Linear OA(3244, 267, F3, 136) (dual of [267, 23, 137]-code) [i]
12Linear OA(3245, 267, F3, 137) (dual of [267, 22, 138]-code) [i]
13Linear OA(3238, 258, F3, 137) (dual of [258, 20, 138]-code) [i]
14Linear OA(3236, 256, F3, 136) (dual of [256, 20, 137]-code) [i]
15Linear OA(3234, 254, F3, 135) (dual of [254, 20, 136]-code) [i]
16Linear OOA(3222, 121, F3, 2, 131) (dual of [(121, 2), 20, 132]-NRT-code) [i]OOA Folding
17Linear OOA(3222, 48, F3, 5, 131) (dual of [(48, 5), 18, 132]-NRT-code) [i]