Information on Result #703797

Linear OA(3121, 364, F3, 34) (dual of [364, 243, 35]-code), using the BCH-code C(I) with length 364 | 36−1, defining interval I = {164,165,…,197}, and designed minimum distance d ≥ |I|+1 = 35

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(3120, 363, F3, 33) (dual of [363, 243, 34]-code) [i]Truncation
2Linear OA(3122, 371, F3, 34) (dual of [371, 249, 35]-code) [i]Construction X with Cyclic Codes
3Linear OA(3124, 377, F3, 34) (dual of [377, 253, 35]-code) [i]
4Linear OA(3125, 380, F3, 34) (dual of [380, 255, 35]-code) [i]
5Linear OA(3128, 386, F3, 34) (dual of [386, 258, 35]-code) [i]
6Linear OA(3127, 370, F3, 35) (dual of [370, 243, 36]-code) [i]
7Linear OA(3134, 377, F3, 36) (dual of [377, 243, 37]-code) [i]
8Linear OA(3136, 377, F3, 37) (dual of [377, 241, 38]-code) [i]
9Linear OA(3137, 380, F3, 37) (dual of [380, 243, 38]-code) [i]
10Linear OA(3144, 384, F3, 38) (dual of [384, 240, 39]-code) [i]
11Linear OA(3145, 388, F3, 38) (dual of [388, 243, 39]-code) [i]
12Linear OA(3152, 391, F3, 39) (dual of [391, 239, 40]-code) [i]
13Linear OA(3153, 392, F3, 40) (dual of [392, 239, 41]-code) [i]
14Linear OA(3135, 393, F3, 35) (dual of [393, 258, 36]-code) [i]Construction XX with Cyclic Codes
15Linear OA(3128, 391, F3, 33) (dual of [391, 263, 34]-code) [i]
16Linear OA(3127, 388, F3, 33) (dual of [388, 261, 34]-code) [i]
17Linear OA(3126, 384, F3, 34) (dual of [384, 258, 35]-code) [i]
18Linear OA(3123, 381, F3, 33) (dual of [381, 258, 34]-code) [i]
19Linear OA(3125, 381, F3, 34) (dual of [381, 256, 35]-code) [i]
20Linear OA(3123, 375, F3, 34) (dual of [375, 252, 35]-code) [i]
21Linear OA(3128, 374, F3, 35) (dual of [374, 246, 36]-code) [i]
22Linear OA(3128, 377, F3, 35) (dual of [377, 249, 36]-code) [i]
23Linear OA(3141, 396, F3, 37) (dual of [396, 255, 38]-code) [i]
24Linear OA(3138, 393, F3, 36) (dual of [393, 255, 37]-code) [i]
25Linear OA(3140, 393, F3, 37) (dual of [393, 253, 38]-code) [i]
26Linear OA(3137, 390, F3, 36) (dual of [390, 253, 37]-code) [i]
27Linear OA(3138, 384, F3, 37) (dual of [384, 246, 38]-code) [i]
28Linear OA(3135, 381, F3, 36) (dual of [381, 246, 37]-code) [i]
29Linear OA(3137, 381, F3, 37) (dual of [381, 244, 38]-code) [i]
30Linear OA(3138, 387, F3, 37) (dual of [387, 249, 38]-code) [i]
31Linear OA(3135, 384, F3, 36) (dual of [384, 249, 37]-code) [i]
32Linear OA(3137, 384, F3, 37) (dual of [384, 247, 38]-code) [i]
33Linear OA(3145, 391, F3, 38) (dual of [391, 246, 39]-code) [i]
34Linear OA(3133, 376, F3, 36) (dual of [376, 243, 37]-code) [i]
35Linear OA(3143, 386, F3, 38) (dual of [386, 243, 39]-code) [i]
36Linear OA(3142, 383, F3, 38) (dual of [383, 241, 39]-code) [i]
37Linear OA(3151, 394, F3, 39) (dual of [394, 243, 40]-code) [i]
38Linear OA(3150, 390, F3, 39) (dual of [390, 240, 40]-code) [i]
39Linear OA(3159, 398, F3, 41) (dual of [398, 239, 42]-code) [i]
40Linear OA(3150, 393, F3, 39) (dual of [393, 243, 40]-code) [i]
41Linear OA(3152, 393, F3, 40) (dual of [393, 241, 41]-code) [i]
42Linear OA(3149, 390, F3, 39) (dual of [390, 241, 40]-code) [i]
43Linear OOA(3121, 182, F3, 2, 34) (dual of [(182, 2), 243, 35]-NRT-code) [i]OOA Folding
44Linear OOA(3121, 121, F3, 3, 34) (dual of [(121, 3), 242, 35]-NRT-code) [i]