Information on Result #703969
Linear OA(3121, 376, F3, 33) (dual of [376, 255, 34]-code), using construction XX applied to C1 = C([167,198]), C2 = C([166,197]), C3 = C1 + C2 = C([167,197]), and C∩ = C1 ∩ C2 = C([166,198]) based on
- linear OA(3115, 364, F3, 32) (dual of [364, 249, 33]-code), using the BCH-code C(I) with length 364 | 36−1, defining interval I = {167,168,…,198}, and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(3115, 364, F3, 32) (dual of [364, 249, 33]-code), using the BCH-code C(I) with length 364 | 36−1, defining interval I = {166,167,…,197}, and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(3121, 364, F3, 33) (dual of [364, 243, 34]-code), using the BCH-code C(I) with length 364 | 36−1, defining interval I = {166,167,…,198}, and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(3109, 364, F3, 31) (dual of [364, 255, 32]-code), using the BCH-code C(I) with length 364 | 36−1, defining interval I = {167,168,…,197}, and designed minimum distance d ≥ |I|+1 = 32 [i]
- linear OA(30, 6, F3, 0) (dual of [6, 6, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(30, s, F3, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(30, 6, F3, 0) (dual of [6, 6, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(3121, 188, F3, 2, 33) (dual of [(188, 2), 255, 34]-NRT-code) | [i] | OOA Folding | |
2 | Linear OOA(3121, 125, F3, 3, 33) (dual of [(125, 3), 254, 34]-NRT-code) | [i] |