Information on Result #704311

Linear OA(379, 728, F3, 20) (dual of [728, 649, 21]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {−3,−2,…,16}, and designed minimum distance d ≥ |I|+1 = 21

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(379, 426, F3, 2, 20) (dual of [(426, 2), 773, 21]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(379, 426, F3, 3, 20) (dual of [(426, 3), 1199, 21]-NRT-code) [i]
3Linear OOA(379, 426, F3, 4, 20) (dual of [(426, 4), 1625, 21]-NRT-code) [i]
4Linear OOA(379, 426, F3, 5, 20) (dual of [(426, 5), 2051, 21]-NRT-code) [i]
5Digital (59, 79, 426)-net over F3 [i]
6Linear OA(384, 752, F3, 20) (dual of [752, 668, 21]-code) [i]Construction XX with Cyclic Codes
7Linear OA(383, 750, F3, 20) (dual of [750, 667, 21]-code) [i]
8Linear OA(382, 747, F3, 20) (dual of [747, 665, 21]-code) [i]
9Linear OA(391, 753, F3, 22) (dual of [753, 662, 23]-code) [i]
10Linear OA(389, 748, F3, 21) (dual of [748, 659, 22]-code) [i]
11Linear OA(390, 751, F3, 22) (dual of [751, 661, 23]-code) [i]
12Linear OA(387, 748, F3, 21) (dual of [748, 661, 22]-code) [i]
13Linear OA(389, 748, F3, 22) (dual of [748, 659, 23]-code) [i]