Information on Result #705282

Linear OA(3190, 728, F3, 49) (dual of [728, 538, 50]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {−6,−5,…,42}, and designed minimum distance d ≥ |I|+1 = 50

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(3210, 796, F3, 48) (dual of [796, 586, 49]-code) [i]Construction XX with Cyclic Codes
2Linear OA(3214, 799, F3, 49) (dual of [799, 585, 50]-code) [i]
3Linear OA(3208, 790, F3, 48) (dual of [790, 582, 49]-code) [i]
4Linear OA(3213, 794, F3, 49) (dual of [794, 581, 50]-code) [i]
5Linear OA(3207, 787, F3, 48) (dual of [787, 580, 49]-code) [i]
6Linear OA(3211, 790, F3, 49) (dual of [790, 579, 50]-code) [i]
7Linear OA(3205, 781, F3, 48) (dual of [781, 576, 49]-code) [i]
8Linear OA(3210, 785, F3, 49) (dual of [785, 575, 50]-code) [i]
9Linear OA(3204, 778, F3, 48) (dual of [778, 574, 49]-code) [i]
10Linear OA(3208, 781, F3, 49) (dual of [781, 573, 50]-code) [i]
11Linear OA(3202, 772, F3, 48) (dual of [772, 570, 49]-code) [i]
12Linear OA(3201, 769, F3, 48) (dual of [769, 568, 49]-code) [i]
13Linear OA(3205, 772, F3, 49) (dual of [772, 567, 50]-code) [i]
14Linear OA(3199, 763, F3, 48) (dual of [763, 564, 49]-code) [i]
15Linear OA(3210, 796, F3, 49) (dual of [796, 586, 50]-code) [i]
16Linear OA(3208, 794, F3, 48) (dual of [794, 586, 49]-code) [i]
17Linear OA(3208, 790, F3, 49) (dual of [790, 582, 50]-code) [i]
18Linear OA(3206, 788, F3, 48) (dual of [788, 582, 49]-code) [i]
19Linear OA(3207, 787, F3, 49) (dual of [787, 580, 50]-code) [i]
20Linear OA(3205, 785, F3, 48) (dual of [785, 580, 49]-code) [i]
21Linear OA(3205, 781, F3, 49) (dual of [781, 576, 50]-code) [i]
22Linear OA(3204, 778, F3, 49) (dual of [778, 574, 50]-code) [i]
23Linear OA(3201, 775, F3, 48) (dual of [775, 574, 49]-code) [i]
24Linear OA(3202, 772, F3, 49) (dual of [772, 570, 50]-code) [i]
25Linear OA(3199, 769, F3, 48) (dual of [769, 570, 49]-code) [i]
26Linear OA(3201, 769, F3, 49) (dual of [769, 568, 50]-code) [i]
27Linear OA(3199, 763, F3, 49) (dual of [763, 564, 50]-code) [i]
28Linear OA(3210, 771, F3, 50) (dual of [771, 561, 51]-code) [i]
29Linear OA(3206, 768, F3, 50) (dual of [768, 562, 51]-code) [i]
30Linear OA(3204, 762, F3, 50) (dual of [762, 558, 51]-code) [i]
31Linear OA(3216, 778, F3, 51) (dual of [778, 562, 52]-code) [i]
32Linear OA(3220, 781, F3, 52) (dual of [781, 561, 53]-code) [i]
33Linear OA(3214, 772, F3, 51) (dual of [772, 558, 52]-code) [i]
34Linear OA(3216, 778, F3, 52) (dual of [778, 562, 53]-code) [i]
35Linear OA(3213, 775, F3, 51) (dual of [775, 562, 52]-code) [i]
36Linear OA(3214, 772, F3, 52) (dual of [772, 558, 53]-code) [i]
37Linear OA(3211, 769, F3, 51) (dual of [769, 558, 52]-code) [i]
38Linear OA(3228, 789, F3, 53) (dual of [789, 561, 54]-code) [i]
39Linear OA(3227, 784, F3, 53) (dual of [784, 557, 54]-code) [i]
40Linear OA(3224, 786, F3, 53) (dual of [786, 562, 54]-code) [i]
41Linear OA(3222, 780, F3, 53) (dual of [780, 558, 54]-code) [i]
42Linear OA(3234, 796, F3, 54) (dual of [796, 562, 55]-code) [i]
43Linear OA(3238, 799, F3, 55) (dual of [799, 561, 56]-code) [i]
44Linear OA(3232, 790, F3, 54) (dual of [790, 558, 55]-code) [i]
45Linear OA(3237, 794, F3, 55) (dual of [794, 557, 56]-code) [i]
46Linear OA(3234, 796, F3, 55) (dual of [796, 562, 56]-code) [i]
47Linear OA(3232, 794, F3, 54) (dual of [794, 562, 55]-code) [i]
48Linear OA(3232, 790, F3, 55) (dual of [790, 558, 56]-code) [i]
49Linear OA(3230, 788, F3, 54) (dual of [788, 558, 55]-code) [i]
50Linear OOA(3190, 364, F3, 2, 49) (dual of [(364, 2), 538, 50]-NRT-code) [i]OOA Folding
51Linear OOA(3190, 182, F3, 4, 49) (dual of [(182, 4), 538, 50]-NRT-code) [i]