Information on Result #706110

Linear OA(439, 265, F4, 13) (dual of [265, 226, 14]-code), using construction XX applied to C1 = C([79,89]), C2 = C([77,87]), C3 = C1 + C2 = C([79,87]), and C∩ = C1 ∩ C2 = C([77,89]) based on
  1. linear OA(433, 255, F4, 11) (dual of [255, 222, 12]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {79,80,…,89}, and designed minimum distance d ≥ |I|+1 = 12 [i]
  2. linear OA(433, 255, F4, 11) (dual of [255, 222, 12]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {77,78,…,87}, and designed minimum distance d ≥ |I|+1 = 12 [i]
  3. linear OA(437, 255, F4, 13) (dual of [255, 218, 14]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {77,78,…,89}, and designed minimum distance d ≥ |I|+1 = 14 [i]
  4. linear OA(429, 255, F4, 9) (dual of [255, 226, 10]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {79,80,…,87}, and designed minimum distance d ≥ |I|+1 = 10 [i]
  5. linear OA(41, 5, F4, 1) (dual of [5, 4, 2]-code), using
  6. linear OA(41, 5, F4, 1) (dual of [5, 4, 2]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(443, 287, F4, 13) (dual of [287, 244, 14]-code) [i]VarÅ¡amov–Edel Lengthening
2Linear OOA(439, 132, F4, 2, 13) (dual of [(132, 2), 225, 14]-NRT-code) [i]OOA Folding