Information on Result #706261
Linear OA(459, 263, F4, 20) (dual of [263, 204, 21]-code), using construction XX applied to C1 = C([254,17]), C2 = C([0,18]), C3 = C1 + C2 = C([0,17]), and C∩ = C1 ∩ C2 = C([254,18]) based on
- linear OA(455, 255, F4, 19) (dual of [255, 200, 20]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {−1,0,…,17}, and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(455, 255, F4, 19) (dual of [255, 200, 20]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [0,18], and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(459, 255, F4, 20) (dual of [255, 196, 21]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {−1,0,…,18}, and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(451, 255, F4, 18) (dual of [255, 204, 19]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [0,17], and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(40, 4, F4, 0) (dual of [4, 4, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(40, s, F4, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(40, 4, F4, 0) (dual of [4, 4, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(462, 273, F4, 20) (dual of [273, 211, 21]-code) | [i] | Varšamov–Edel Lengthening | |
2 | Linear OA(463, 282, F4, 20) (dual of [282, 219, 21]-code) | [i] | ||
3 | Linear OA(464, 296, F4, 20) (dual of [296, 232, 21]-code) | [i] | ||
4 | Linear OA(465, 315, F4, 20) (dual of [315, 250, 21]-code) | [i] | ||
5 | Linear OOA(459, 131, F4, 2, 20) (dual of [(131, 2), 203, 21]-NRT-code) | [i] | OOA Folding | |
6 | Linear OOA(459, 87, F4, 3, 20) (dual of [(87, 3), 202, 21]-NRT-code) | [i] |