Information on Result #706318
Linear OA(475, 255, F4, 26) (dual of [255, 180, 27]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {−4,−3,…,21}, and designed minimum distance d ≥ |I|+1 = 27
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive Expurgated Narrow-Sense BCH-Codes [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(481, 278, F4, 26) (dual of [278, 197, 27]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
2 | Linear OA(483, 287, F4, 26) (dual of [287, 204, 27]-code) | [i] | ✔ | |
3 | Linear OA(482, 282, F4, 26) (dual of [282, 200, 27]-code) | [i] | ✔ | |
4 | Linear OA(479, 275, F4, 26) (dual of [275, 196, 27]-code) | [i] | ✔ | |
5 | Linear OA(483, 275, F4, 27) (dual of [275, 192, 28]-code) | [i] | ✔ | |
6 | Linear OA(492, 285, F4, 29) (dual of [285, 193, 30]-code) | [i] | ✔ | |
7 | Linear OA(490, 282, F4, 29) (dual of [282, 192, 30]-code) | [i] | ✔ | |
8 | Linear OA(495, 287, F4, 30) (dual of [287, 192, 31]-code) | [i] | ✔ |