Information on Result #706555
Linear OA(4110, 282, F4, 36) (dual of [282, 172, 37]-code), using construction XX applied to C1 = C([51,85]), C2 = C([57,86]), C3 = C1 + C2 = C([57,85]), and C∩ = C1 ∩ C2 = C([51,86]) based on
- linear OA(497, 255, F4, 35) (dual of [255, 158, 36]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {51,52,…,85}, and designed minimum distance d ≥ |I|+1 = 36 [i]
- linear OA(487, 255, F4, 30) (dual of [255, 168, 31]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {57,58,…,86}, and designed minimum distance d ≥ |I|+1 = 31 [i]
- linear OA(4101, 255, F4, 36) (dual of [255, 154, 37]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {51,52,…,86}, and designed minimum distance d ≥ |I|+1 = 37 [i]
- linear OA(483, 255, F4, 29) (dual of [255, 172, 30]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {57,58,…,85}, and designed minimum distance d ≥ |I|+1 = 30 [i]
- linear OA(49, 23, F4, 5) (dual of [23, 14, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(49, 36, F4, 5) (dual of [36, 27, 6]-code), using
- linear OA(40, 4, F4, 0) (dual of [4, 4, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(40, s, F4, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(4110, 141, F4, 2, 36) (dual of [(141, 2), 172, 37]-NRT-code) | [i] | OOA Folding |