Information on Result #706584

Linear OA(495, 263, F4, 32) (dual of [263, 168, 33]-code), using construction XX applied to C1 = C([254,29]), C2 = C([0,30]), C3 = C1 + C2 = C([0,29]), and C∩ = C1 ∩ C2 = C([254,30]) based on
  1. linear OA(491, 255, F4, 31) (dual of [255, 164, 32]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {−1,0,…,29}, and designed minimum distance d ≥ |I|+1 = 32 [i]
  2. linear OA(491, 255, F4, 31) (dual of [255, 164, 32]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [0,30], and designed minimum distance d ≥ |I|+1 = 32 [i]
  3. linear OA(495, 255, F4, 32) (dual of [255, 160, 33]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {−1,0,…,30}, and designed minimum distance d ≥ |I|+1 = 33 [i]
  4. linear OA(487, 255, F4, 30) (dual of [255, 168, 31]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [0,29], and designed minimum distance d ≥ |I|+1 = 31 [i]
  5. linear OA(40, 4, F4, 0) (dual of [4, 4, 1]-code), using
  6. linear OA(40, 4, F4, 0) (dual of [4, 4, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(495, 131, F4, 2, 32) (dual of [(131, 2), 167, 33]-NRT-code) [i]OOA Folding
2Linear OOA(495, 87, F4, 3, 32) (dual of [(87, 3), 166, 33]-NRT-code) [i]