Information on Result #706584
Linear OA(495, 263, F4, 32) (dual of [263, 168, 33]-code), using construction XX applied to C1 = C([254,29]), C2 = C([0,30]), C3 = C1 + C2 = C([0,29]), and C∩ = C1 ∩ C2 = C([254,30]) based on
- linear OA(491, 255, F4, 31) (dual of [255, 164, 32]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {−1,0,…,29}, and designed minimum distance d ≥ |I|+1 = 32 [i]
- linear OA(491, 255, F4, 31) (dual of [255, 164, 32]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [0,30], and designed minimum distance d ≥ |I|+1 = 32 [i]
- linear OA(495, 255, F4, 32) (dual of [255, 160, 33]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {−1,0,…,30}, and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(487, 255, F4, 30) (dual of [255, 168, 31]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [0,29], and designed minimum distance d ≥ |I|+1 = 31 [i]
- linear OA(40, 4, F4, 0) (dual of [4, 4, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(40, s, F4, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(40, 4, F4, 0) (dual of [4, 4, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(495, 131, F4, 2, 32) (dual of [(131, 2), 167, 33]-NRT-code) | [i] | OOA Folding | |
2 | Linear OOA(495, 87, F4, 3, 32) (dual of [(87, 3), 166, 33]-NRT-code) | [i] |