Information on Result #706619
Linear OA(4112, 275, F4, 38) (dual of [275, 163, 39]-code), using construction XX applied to C1 = C([49,85]), C2 = C([55,86]), C3 = C1 + C2 = C([55,85]), and C∩ = C1 ∩ C2 = C([49,86]) based on
- linear OA(4101, 255, F4, 37) (dual of [255, 154, 38]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {49,50,…,85}, and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(495, 255, F4, 32) (dual of [255, 160, 33]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {55,56,…,86}, and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(4105, 255, F4, 38) (dual of [255, 150, 39]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {49,50,…,86}, and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(491, 255, F4, 31) (dual of [255, 164, 32]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {55,56,…,85}, and designed minimum distance d ≥ |I|+1 = 32 [i]
- linear OA(47, 16, F4, 5) (dual of [16, 9, 6]-code), using
- an extension Ce(4) of the primitive narrow-sense BCH-code C(I) with length 15 = 42−1, defining interval I = [1,4], and designed minimum distance d ≥ |I|+1 = 5 [i]
- linear OA(40, 4, F4, 0) (dual of [4, 4, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(40, s, F4, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.