Information on Result #706752

Linear OA(4117, 255, F4, 42) (dual of [255, 138, 43]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {−5,−4,…,36}, and designed minimum distance d ≥ |I|+1 = 43

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(4128, 287, F4, 42) (dual of [287, 159, 43]-code) [i]Construction XX with Cyclic Codes
2Linear OA(4127, 287, F4, 42) (dual of [287, 160, 43]-code) [i]
3Linear OA(4126, 285, F4, 42) (dual of [285, 159, 43]-code) [i]
4Linear OA(4125, 283, F4, 42) (dual of [283, 158, 43]-code) [i]
5Linear OA(4124, 281, F4, 42) (dual of [281, 157, 43]-code) [i]
6Linear OA(4128, 282, F4, 43) (dual of [282, 154, 44]-code) [i]
7Linear OA(4127, 280, F4, 43) (dual of [280, 153, 44]-code) [i]
8Linear OA(4136, 291, F4, 44) (dual of [291, 155, 45]-code) [i]
9Linear OA(4133, 287, F4, 44) (dual of [287, 154, 45]-code) [i]
10Linear OA(4132, 285, F4, 44) (dual of [285, 153, 45]-code) [i]
11Linear OA(4143, 298, F4, 46) (dual of [298, 155, 47]-code) [i]
12Linear OA(4142, 295, F4, 46) (dual of [295, 153, 47]-code) [i]
13Linear OA(4140, 294, F4, 46) (dual of [294, 154, 47]-code) [i]
14Linear OA(4139, 292, F4, 46) (dual of [292, 153, 47]-code) [i]
15Linear OA(4146, 299, F4, 47) (dual of [299, 153, 48]-code) [i]