Information on Result #706921

Linear OA(4113, 255, F4, 41) (dual of [255, 142, 42]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [0,40], and designed minimum distance d ≥ |I|+1 = 42

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(4133, 287, F4, 45) (dual of [287, 154, 46]-code) [i]Construction XX with Cyclic Codes
2Linear OA(4123, 269, F4, 43) (dual of [269, 146, 44]-code) [i]
3Linear OA(4140, 294, F4, 46) (dual of [294, 154, 47]-code) [i]
4Linear OA(4139, 292, F4, 46) (dual of [292, 153, 47]-code) [i]
5Linear OA(4132, 282, F4, 45) (dual of [282, 150, 46]-code) [i]
6Linear OA(4147, 301, F4, 47) (dual of [301, 154, 48]-code) [i]
7Linear OA(4138, 287, F4, 46) (dual of [287, 149, 47]-code) [i]
8Linear OA(4130, 276, F4, 45) (dual of [276, 146, 46]-code) [i]
9Linear OA(4137, 283, F4, 46) (dual of [283, 146, 47]-code) [i]
10Linear OA(4136, 281, F4, 46) (dual of [281, 145, 47]-code) [i]
11Linear OA(4144, 290, F4, 47) (dual of [290, 146, 48]-code) [i]
12Linear OA(4121, 263, F4, 43) (dual of [263, 142, 44]-code) [i]
13Linear OA(4126, 268, F4, 44) (dual of [268, 142, 45]-code) [i]
14Linear OA(4133, 275, F4, 46) (dual of [275, 142, 47]-code) [i]
15Linear OA(4140, 282, F4, 47) (dual of [282, 142, 48]-code) [i]
16Linear OA(4139, 280, F4, 47) (dual of [280, 141, 48]-code) [i]
17Linear OA(4138, 280, F4, 47) (dual of [280, 142, 48]-code) [i]
18Linear OA(4145, 287, F4, 48) (dual of [287, 142, 49]-code) [i]
19Linear OA(4144, 285, F4, 48) (dual of [285, 141, 49]-code) [i]
20Linear OA(4145, 287, F4, 49) (dual of [287, 142, 50]-code) [i]
21Linear OOA(4113, 85, F4, 3, 41) (dual of [(85, 3), 142, 42]-NRT-code) [i]OOA Folding