Information on Result #707110
Linear OA(4191, 266, F4, 91) (dual of [266, 75, 92]-code), using construction XX applied to C1 = C([81,169]), C2 = C([84,171]), C3 = C1 + C2 = C([84,169]), and C∩ = C1 ∩ C2 = C([81,171]) based on
- linear OA(4183, 255, F4, 89) (dual of [255, 72, 90]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {81,82,…,169}, and designed minimum distance d ≥ |I|+1 = 90 [i]
- linear OA(4184, 255, F4, 88) (dual of [255, 71, 89]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {84,85,…,171}, and designed minimum distance d ≥ |I|+1 = 89 [i]
- linear OA(4188, 255, F4, 91) (dual of [255, 67, 92]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {81,82,…,171}, and designed minimum distance d ≥ |I|+1 = 92 [i]
- linear OA(4179, 255, F4, 86) (dual of [255, 76, 87]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {84,85,…,169}, and designed minimum distance d ≥ |I|+1 = 87 [i]
- linear OA(42, 5, F4, 2) (dual of [5, 3, 3]-code or 5-arc in PG(1,4)), using
- extended Reed–Solomon code RSe(3,4) [i]
- Hamming code H(2,4) [i]
- linear OA(41, 6, F4, 1) (dual of [6, 5, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(41, s, F4, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(4191, 133, F4, 2, 91) (dual of [(133, 2), 75, 92]-NRT-code) | [i] | OOA Folding |