Information on Result #711100

Linear OA(576, 657, F5, 21) (dual of [657, 581, 22]-code), using construction XX applied to C1 = C([148,166]), C2 = C([146,159]), C3 = C1 + C2 = C([148,159]), and C∩ = C1 ∩ C2 = C([146,166]) based on
  1. linear OA(561, 624, F5, 19) (dual of [624, 563, 20]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {148,149,…,166}, and designed minimum distance d ≥ |I|+1 = 20 [i]
  2. linear OA(545, 624, F5, 14) (dual of [624, 579, 15]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {146,147,…,159}, and designed minimum distance d ≥ |I|+1 = 15 [i]
  3. linear OA(565, 624, F5, 21) (dual of [624, 559, 22]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {146,147,…,166}, and designed minimum distance d ≥ |I|+1 = 22 [i]
  4. linear OA(541, 624, F5, 12) (dual of [624, 583, 13]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {148,149,…,159}, and designed minimum distance d ≥ |I|+1 = 13 [i]
  5. linear OA(510, 28, F5, 6) (dual of [28, 18, 7]-code), using
    • construction X applied to Ce(5) ⊂ Ce(3) [i] based on
      1. linear OA(59, 25, F5, 6) (dual of [25, 16, 7]-code), using an extension Ce(5) of the primitive narrow-sense BCH-code C(I) with length 24 = 52−1, defining interval I = [1,5], and designed minimum distance d ≥ |I|+1 = 6 [i]
      2. linear OA(57, 25, F5, 4) (dual of [25, 18, 5]-code), using an extension Ce(3) of the primitive narrow-sense BCH-code C(I) with length 24 = 52−1, defining interval I = [1,3], and designed minimum distance d ≥ |I|+1 = 4 [i]
      3. linear OA(51, 3, F5, 1) (dual of [3, 2, 2]-code), using
  6. linear OA(51, 5, F5, 1) (dual of [5, 4, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.