Information on Result #711307
Linear OA(571, 634, F5, 22) (dual of [634, 563, 23]-code), using construction XX applied to C1 = C([136,156]), C2 = C([139,157]), C3 = C1 + C2 = C([139,156]), and C∩ = C1 ∩ C2 = C([136,157]) based on
- linear OA(565, 624, F5, 21) (dual of [624, 559, 22]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {136,137,…,156}, and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(561, 624, F5, 19) (dual of [624, 563, 20]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {139,140,…,157}, and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(569, 624, F5, 22) (dual of [624, 555, 23]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {136,137,…,157}, and designed minimum distance d ≥ |I|+1 = 23 [i]
- linear OA(557, 624, F5, 18) (dual of [624, 567, 19]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {139,140,…,156}, and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(52, 6, F5, 2) (dual of [6, 4, 3]-code or 6-arc in PG(1,5)), using
- extended Reed–Solomon code RSe(4,5) [i]
- Hamming code H(2,5) [i]
- linear OA(50, 4, F5, 0) (dual of [4, 4, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(50, s, F5, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(571, 317, F5, 2, 22) (dual of [(317, 2), 563, 23]-NRT-code) | [i] | OOA Folding |