Information on Result #711935

Linear OA(5135, 672, F5, 38) (dual of [672, 537, 39]-code), using construction XX applied to C1 = C([617,25]), C2 = C([0,30]), C3 = C1 + C2 = C([0,25]), and C∩ = C1 ∩ C2 = C([617,30]) based on
  1. linear OA(5105, 624, F5, 33) (dual of [624, 519, 34]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {−7,−6,…,25}, and designed minimum distance d ≥ |I|+1 = 34 [i]
  2. linear OA(595, 624, F5, 31) (dual of [624, 529, 32]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 54−1, defining interval I = [0,30], and designed minimum distance d ≥ |I|+1 = 32 [i]
  3. linear OA(5119, 624, F5, 38) (dual of [624, 505, 39]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {−7,−6,…,30}, and designed minimum distance d ≥ |I|+1 = 39 [i]
  4. linear OA(581, 624, F5, 26) (dual of [624, 543, 27]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 54−1, defining interval I = [0,25], and designed minimum distance d ≥ |I|+1 = 27 [i]
  5. linear OA(510, 28, F5, 6) (dual of [28, 18, 7]-code), using
    • construction X applied to Ce(5) ⊂ Ce(3) [i] based on
      1. linear OA(59, 25, F5, 6) (dual of [25, 16, 7]-code), using an extension Ce(5) of the primitive narrow-sense BCH-code C(I) with length 24 = 52−1, defining interval I = [1,5], and designed minimum distance d ≥ |I|+1 = 6 [i]
      2. linear OA(57, 25, F5, 4) (dual of [25, 18, 5]-code), using an extension Ce(3) of the primitive narrow-sense BCH-code C(I) with length 24 = 52−1, defining interval I = [1,3], and designed minimum distance d ≥ |I|+1 = 4 [i]
      3. linear OA(51, 3, F5, 1) (dual of [3, 2, 2]-code), using
  6. linear OA(56, 20, F5, 4) (dual of [20, 14, 5]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.