Information on Result #712019

Linear OA(5137, 668, F5, 39) (dual of [668, 531, 40]-code), using construction XX applied to C1 = C([617,27]), C2 = C([0,31]), C3 = C1 + C2 = C([0,27]), and C∩ = C1 ∩ C2 = C([617,31]) based on
  1. linear OA(5111, 624, F5, 35) (dual of [624, 513, 36]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {−7,−6,…,27}, and designed minimum distance d ≥ |I|+1 = 36 [i]
  2. linear OA(599, 624, F5, 32) (dual of [624, 525, 33]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 54−1, defining interval I = [0,31], and designed minimum distance d ≥ |I|+1 = 33 [i]
  3. linear OA(5123, 624, F5, 39) (dual of [624, 501, 40]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {−7,−6,…,31}, and designed minimum distance d ≥ |I|+1 = 40 [i]
  4. linear OA(587, 624, F5, 28) (dual of [624, 537, 29]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 54−1, defining interval I = [0,27], and designed minimum distance d ≥ |I|+1 = 29 [i]
  5. linear OA(510, 28, F5, 6) (dual of [28, 18, 7]-code), using
    • construction X applied to Ce(5) ⊂ Ce(3) [i] based on
      1. linear OA(59, 25, F5, 6) (dual of [25, 16, 7]-code), using an extension Ce(5) of the primitive narrow-sense BCH-code C(I) with length 24 = 52−1, defining interval I = [1,5], and designed minimum distance d ≥ |I|+1 = 6 [i]
      2. linear OA(57, 25, F5, 4) (dual of [25, 18, 5]-code), using an extension Ce(3) of the primitive narrow-sense BCH-code C(I) with length 24 = 52−1, defining interval I = [1,3], and designed minimum distance d ≥ |I|+1 = 4 [i]
      3. linear OA(51, 3, F5, 1) (dual of [3, 2, 2]-code), using
  6. linear OA(54, 16, F5, 3) (dual of [16, 12, 4]-code or 16-cap in PG(3,5)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.