Information on Result #712501

Linear OA(758, 69, F7, 39) (dual of [69, 11, 40]-code), using construction XX applied to C1 = C([7,39]), C2 = C([1,31]), C3 = C1 + C2 = C([7,31]), and C∩ = C1 ∩ C2 = C([1,39]) based on
  1. linear OA(742, 48, F7, 33) (dual of [48, 6, 34]-code), using the primitive BCH-code C(I) with length 48 = 72−1, defining interval I = {7,8,…,39}, and designed minimum distance d ≥ |I|+1 = 34 [i]
  2. linear OA(739, 48, F7, 31) (dual of [48, 9, 32]-code), using the primitive narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [1,27], and designed minimum distance d ≥ |I|+1 = 32 [i]
  3. linear OA(744, 48, F7, 39) (dual of [48, 4, 40]-code), using the primitive narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [1,34], and designed minimum distance d ≥ |I|+1 = 40 [i]
  4. linear OA(735, 48, F7, 25) (dual of [48, 13, 26]-code), using the primitive BCH-code C(I) with length 48 = 72−1, defining interval I = {7,8,…,31}, and designed minimum distance d ≥ |I|+1 = 26 [i]
  5. linear OA(79, 14, F7, 7) (dual of [14, 5, 8]-code), using
  6. linear OA(75, 7, F7, 5) (dual of [7, 2, 6]-code or 7-arc in PG(4,7)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(758, 23, F7, 3, 39) (dual of [(23, 3), 11, 40]-NRT-code) [i]OOA Folding