Information on Result #712525

Linear OA(762, 70, F7, 45) (dual of [70, 8, 46]-code), using construction XX applied to C1 = C([8,47]), C2 = C([1,39]), C3 = C1 + C2 = C([8,39]), and C∩ = C1 ∩ C2 = C([1,47]) based on
  1. linear OA(745, 48, F7, 40) (dual of [48, 3, 41]-code), using the primitive BCH-code C(I) with length 48 = 72−1, defining interval I = {8,9,…,47}, and designed minimum distance d ≥ |I|+1 = 41 [i]
  2. linear OA(744, 48, F7, 39) (dual of [48, 4, 40]-code), using the primitive narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [1,34], and designed minimum distance d ≥ |I|+1 = 40 [i]
  3. linear OA(747, 48, F7, 47) (dual of [48, 1, 48]-code or 48-arc in PG(46,7)), using the primitive narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [1,47], and designed minimum distance d ≥ |I|+1 = 48 [i]
  4. linear OA(740, 48, F7, 32) (dual of [48, 8, 33]-code), using the primitive BCH-code C(I) with length 48 = 72−1, defining interval I = {8,9,…,39}, and designed minimum distance d ≥ |I|+1 = 33 [i]
  5. linear OA(79, 14, F7, 7) (dual of [14, 5, 8]-code), using
  6. linear OA(74, 8, F7, 4) (dual of [8, 4, 5]-code or 8-arc in PG(3,7)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.