Information on Result #713109
Linear OA(799, 182, F7, 44) (dual of [182, 83, 45]-code), using construction XX applied to C1 = C([168,39]), C2 = C([0,40]), C3 = C1 + C2 = C([0,39]), and C∩ = C1 ∩ C2 = C([168,40]) based on
- linear OA(794, 171, F7, 43) (dual of [171, 77, 44]-code), using the BCH-code C(I) with length 171 | 73−1, defining interval I = {−3,−2,…,39}, and designed minimum distance d ≥ |I|+1 = 44 [i]
- linear OA(791, 171, F7, 41) (dual of [171, 80, 42]-code), using the expurgated narrow-sense BCH-code C(I) with length 171 | 73−1, defining interval I = [0,40], and designed minimum distance d ≥ |I|+1 = 42 [i]
- linear OA(797, 171, F7, 44) (dual of [171, 74, 45]-code), using the BCH-code C(I) with length 171 | 73−1, defining interval I = {−3,−2,…,40}, and designed minimum distance d ≥ |I|+1 = 45 [i]
- linear OA(788, 171, F7, 40) (dual of [171, 83, 41]-code), using the expurgated narrow-sense BCH-code C(I) with length 171 | 73−1, defining interval I = [0,39], and designed minimum distance d ≥ |I|+1 = 41 [i]
- linear OA(72, 8, F7, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,7)), using
- extended Reed–Solomon code RSe(6,7) [i]
- Hamming code H(2,7) [i]
- algebraic-geometric code AG(F, Q+1P) with degQ = 3 and degPÂ =Â 2 [i] based on function field F/F7 with g(F) = 0 and N(F) ≥ 8, using the rational function field F7(x) [i]
- linear OA(70, 3, F7, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(70, s, F7, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(799, 91, F7, 2, 44) (dual of [(91, 2), 83, 45]-NRT-code) | [i] | OOA Folding |