Information on Result #713676
Linear OA(773, 366, F7, 26) (dual of [366, 293, 27]-code), using construction XX applied to C1 = C([338,18]), C2 = C([0,21]), C3 = C1 + C2 = C([0,18]), and C∩ = C1 ∩ C2 = C([338,21]) based on
- linear OA(761, 342, F7, 23) (dual of [342, 281, 24]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {−4,−3,…,18}, and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(755, 342, F7, 22) (dual of [342, 287, 23]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 342 = 73−1, defining interval I = [0,21], and designed minimum distance d ≥ |I|+1 = 23 [i]
- linear OA(767, 342, F7, 26) (dual of [342, 275, 27]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {−4,−3,…,21}, and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(749, 342, F7, 19) (dual of [342, 293, 20]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 342 = 73−1, defining interval I = [0,18], and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(74, 16, F7, 3) (dual of [16, 12, 4]-code or 16-cap in PG(3,7)), using
- linear OA(72, 8, F7, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,7)), using
- extended Reed–Solomon code RSe(6,7) [i]
- Hamming code H(2,7) [i]
- algebraic-geometric code AG(F, Q+1P) with degQ = 3 and degPÂ =Â 2 [i] based on function field F/F7 with g(F) = 0 and N(F) ≥ 8, using the rational function field F7(x) [i]
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(773, 183, F7, 2, 26) (dual of [(183, 2), 293, 27]-NRT-code) | [i] | OOA Folding | |
2 | Linear OOA(773, 122, F7, 3, 26) (dual of [(122, 3), 293, 27]-NRT-code) | [i] |