Information on Result #713692

Linear OA(781, 371, F7, 28) (dual of [371, 290, 29]-code), using construction XX applied to C1 = C([335,19]), C2 = C([0,21]), C3 = C1 + C2 = C([0,19]), and C∩ = C1 ∩ C2 = C([335,21]) based on
  1. linear OA(770, 342, F7, 27) (dual of [342, 272, 28]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {−7,−6,…,19}, and designed minimum distance d ≥ |I|+1 = 28 [i]
  2. linear OA(755, 342, F7, 22) (dual of [342, 287, 23]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 342 = 73−1, defining interval I = [0,21], and designed minimum distance d ≥ |I|+1 = 23 [i]
  3. linear OA(773, 342, F7, 29) (dual of [342, 269, 30]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {−7,−6,…,21}, and designed minimum distance d ≥ |I|+1 = 30 [i]
  4. linear OA(752, 342, F7, 20) (dual of [342, 290, 21]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 342 = 73−1, defining interval I = [0,19], and designed minimum distance d ≥ |I|+1 = 21 [i]
  5. linear OA(77, 25, F7, 5) (dual of [25, 18, 6]-code), using
  6. linear OA(71, 4, F7, 1) (dual of [4, 3, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(781, 185, F7, 2, 28) (dual of [(185, 2), 289, 29]-NRT-code) [i]OOA Folding
2Linear OOA(781, 123, F7, 3, 28) (dual of [(123, 3), 288, 29]-NRT-code) [i]