Information on Result #713762

Linear OA(790, 376, F7, 31) (dual of [376, 286, 32]-code), using construction XX applied to C1 = C([335,21]), C2 = C([0,23]), C3 = C1 + C2 = C([0,21]), and C∩ = C1 ∩ C2 = C([335,23]) based on
  1. linear OA(773, 342, F7, 29) (dual of [342, 269, 30]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {−7,−6,…,21}, and designed minimum distance d ≥ |I|+1 = 30 [i]
  2. linear OA(761, 342, F7, 24) (dual of [342, 281, 25]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 342 = 73−1, defining interval I = [0,23], and designed minimum distance d ≥ |I|+1 = 25 [i]
  3. linear OA(779, 342, F7, 31) (dual of [342, 263, 32]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {−7,−6,…,23}, and designed minimum distance d ≥ |I|+1 = 32 [i]
  4. linear OA(755, 342, F7, 22) (dual of [342, 287, 23]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 342 = 73−1, defining interval I = [0,21], and designed minimum distance d ≥ |I|+1 = 23 [i]
  5. linear OA(710, 27, F7, 6) (dual of [27, 17, 7]-code), using
  6. linear OA(71, 7, F7, 1) (dual of [7, 6, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(790, 188, F7, 2, 31) (dual of [(188, 2), 286, 32]-NRT-code) [i]OOA Folding
2Linear OOA(790, 125, F7, 3, 31) (dual of [(125, 3), 285, 32]-NRT-code) [i]