Information on Result #714115
Linear OA(7109, 366, F7, 40) (dual of [366, 257, 41]-code), using construction XX applied to C1 = C([338,32]), C2 = C([0,35]), C3 = C1 + C2 = C([0,32]), and C∩ = C1 ∩ C2 = C([338,35]) based on
- linear OA(797, 342, F7, 37) (dual of [342, 245, 38]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {−4,−3,…,32}, and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(791, 342, F7, 36) (dual of [342, 251, 37]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 342 = 73−1, defining interval I = [0,35], and designed minimum distance d ≥ |I|+1 = 37 [i]
- linear OA(7103, 342, F7, 40) (dual of [342, 239, 41]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {−4,−3,…,35}, and designed minimum distance d ≥ |I|+1 = 41 [i]
- linear OA(785, 342, F7, 33) (dual of [342, 257, 34]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 342 = 73−1, defining interval I = [0,32], and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(74, 16, F7, 3) (dual of [16, 12, 4]-code or 16-cap in PG(3,7)), using
- linear OA(72, 8, F7, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,7)), using
- extended Reed–Solomon code RSe(6,7) [i]
- Hamming code H(2,7) [i]
- algebraic-geometric code AG(F, Q+1P) with degQ = 3 and degPÂ =Â 2 [i] based on function field F/F7 with g(F) = 0 and N(F) ≥ 8, using the rational function field F7(x) [i]
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(7109, 183, F7, 2, 40) (dual of [(183, 2), 257, 41]-NRT-code) | [i] | OOA Folding | |
2 | Linear OOA(7109, 122, F7, 3, 40) (dual of [(122, 3), 257, 41]-NRT-code) | [i] |