Information on Result #714490

Linear OA(826, 67, F8, 15) (dual of [67, 41, 16]-code), using construction XX applied to C1 = C([62,12]), C2 = C([0,13]), C3 = C1 + C2 = C([0,12]), and C∩ = C1 ∩ C2 = C([62,13]) based on
  1. linear OA(824, 63, F8, 14) (dual of [63, 39, 15]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−1,0,…,12}, and designed minimum distance d ≥ |I|+1 = 15 [i]
  2. linear OA(824, 63, F8, 14) (dual of [63, 39, 15]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,13], and designed minimum distance d ≥ |I|+1 = 15 [i]
  3. linear OA(826, 63, F8, 15) (dual of [63, 37, 16]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−1,0,…,13}, and designed minimum distance d ≥ |I|+1 = 16 [i]
  4. linear OA(822, 63, F8, 13) (dual of [63, 41, 14]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,12], and designed minimum distance d ≥ |I|+1 = 14 [i]
  5. linear OA(80, 2, F8, 0) (dual of [2, 2, 1]-code), using
  6. linear OA(80, 2, F8, 0) (dual of [2, 2, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(8135, 578, F8, 42) (dual of [578, 443, 43]-code) [i]Construction X with Cyclic Codes
2Linear OA(8138, 578, F8, 43) (dual of [578, 440, 44]-code) [i]
3Linear OA(8141, 578, F8, 44) (dual of [578, 437, 45]-code) [i]
4Linear OA(8144, 578, F8, 45) (dual of [578, 434, 46]-code) [i]
5Linear OA(8147, 578, F8, 46) (dual of [578, 431, 47]-code) [i]
6Linear OA(8153, 578, F8, 49) (dual of [578, 425, 50]-code) [i]
7Linear OA(8153, 580, F8, 49) (dual of [580, 427, 50]-code) [i]