Information on Result #714514

Linear OA(833, 63, F8, 21) (dual of [63, 30, 22]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−2,−1,…,18}, and designed minimum distance d ≥ |I|+1 = 22

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(888, 110, F8, 43) (dual of [110, 22, 44]-code) [i]Repeating Each Code Word
2Linear OA(887, 108, F8, 43) (dual of [108, 21, 44]-code) [i]
3Linear OA(886, 106, F8, 43) (dual of [106, 20, 44]-code) [i]
4Linear OA(885, 104, F8, 43) (dual of [104, 19, 44]-code) [i]
5Linear OOA(2258, 159, F2, 2, 87) (dual of [(159, 2), 60, 88]-NRT-code) [i]Concatenation of Two NRT-Codes
6Linear OOA(2255, 156, F2, 2, 87) (dual of [(156, 2), 57, 88]-NRT-code) [i]
7Linear OA(843, 82, F8, 22) (dual of [82, 39, 23]-code) [i]Construction XX with Cyclic Codes
8Linear OA(841, 78, F8, 22) (dual of [78, 37, 23]-code) [i]
9Linear OA(844, 81, F8, 23) (dual of [81, 37, 24]-code) [i]
10Linear OA(847, 84, F8, 24) (dual of [84, 37, 25]-code) [i]
11Linear OA(836, 70, F8, 22) (dual of [70, 34, 23]-code) [i]