Information on Result #714619

Linear OA(855, 87, F8, 30) (dual of [87, 32, 31]-code), using construction XX applied to C1 = C([54,19]), C2 = C([0,20]), C3 = C1 + C2 = C([0,19]), and C∩ = C1 ∩ C2 = C([54,20]) based on
  1. linear OA(842, 63, F8, 29) (dual of [63, 21, 30]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−9,−8,…,19}, and designed minimum distance d ≥ |I|+1 = 30 [i]
  2. linear OA(833, 63, F8, 21) (dual of [63, 30, 22]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,20], and designed minimum distance d ≥ |I|+1 = 22 [i]
  3. linear OA(844, 63, F8, 30) (dual of [63, 19, 31]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−9,−8,…,20}, and designed minimum distance d ≥ |I|+1 = 31 [i]
  4. linear OA(831, 63, F8, 20) (dual of [63, 32, 21]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,19], and designed minimum distance d ≥ |I|+1 = 21 [i]
  5. linear OA(811, 22, F8, 8) (dual of [22, 11, 9]-code), using
  6. linear OA(80, 2, F8, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.