Information on Result #714695

Linear OA(866, 97, F8, 35) (dual of [97, 31, 36]-code), using construction XX applied to C1 = C([9,35]), C2 = C([1,26]), C3 = C1 + C2 = C([9,26]), and C∩ = C1 ∩ C2 = C([1,35]) based on
  1. linear OA(839, 63, F8, 27) (dual of [63, 24, 28]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {9,10,…,35}, and designed minimum distance d ≥ |I|+1 = 28 [i]
  2. linear OA(838, 63, F8, 26) (dual of [63, 25, 27]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [1,26], and designed minimum distance d ≥ |I|+1 = 27 [i]
  3. linear OA(847, 63, F8, 35) (dual of [63, 16, 36]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [1,35], and designed minimum distance d ≥ |I|+1 = 36 [i]
  4. linear OA(828, 63, F8, 18) (dual of [63, 35, 19]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {9,10,…,26}, and designed minimum distance d ≥ |I|+1 = 19 [i]
  5. linear OA(810, 17, F8, 8) (dual of [17, 7, 9]-code), using
  6. linear OA(89, 17, F8, 7) (dual of [17, 8, 8]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.