Information on Result #714733

Linear OA(858, 86, F8, 33) (dual of [86, 28, 34]-code), using construction XX applied to C1 = C([55,20]), C2 = C([0,26]), C3 = C1 + C2 = C([0,20]), and C∩ = C1 ∩ C2 = C([55,26]) based on
  1. linear OA(843, 63, F8, 29) (dual of [63, 20, 30]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−8,−7,…,20}, and designed minimum distance d ≥ |I|+1 = 30 [i]
  2. linear OA(839, 63, F8, 27) (dual of [63, 24, 28]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,26], and designed minimum distance d ≥ |I|+1 = 28 [i]
  3. linear OA(847, 63, F8, 35) (dual of [63, 16, 36]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {−8,−7,…,26}, and designed minimum distance d ≥ |I|+1 = 36 [i]
  4. linear OA(833, 63, F8, 21) (dual of [63, 30, 22]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,20], and designed minimum distance d ≥ |I|+1 = 22 [i]
  5. linear OA(86, 14, F8, 5) (dual of [14, 8, 6]-code), using
  6. linear OA(85, 9, F8, 5) (dual of [9, 4, 6]-code or 9-arc in PG(4,8)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(858, 43, F8, 2, 33) (dual of [(43, 2), 28, 34]-NRT-code) [i]OOA Folding