Information on Result #714779

Linear OA(873, 97, F8, 42) (dual of [97, 24, 43]-code), using construction XX applied to C1 = C([10,44]), C2 = C([1,35]), C3 = C1 + C2 = C([10,35]), and C∩ = C1 ∩ C2 = C([1,44]) based on
  1. linear OA(847, 63, F8, 35) (dual of [63, 16, 36]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {10,11,…,44}, and designed minimum distance d ≥ |I|+1 = 36 [i]
  2. linear OA(847, 63, F8, 35) (dual of [63, 16, 36]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [1,35], and designed minimum distance d ≥ |I|+1 = 36 [i]
  3. linear OA(854, 63, F8, 44) (dual of [63, 9, 45]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [1,44], and designed minimum distance d ≥ |I|+1 = 45 [i]
  4. linear OA(838, 63, F8, 26) (dual of [63, 25, 27]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {10,11,…,35}, and designed minimum distance d ≥ |I|+1 = 27 [i]
  5. linear OA(89, 17, F8, 7) (dual of [17, 8, 8]-code), using
  6. linear OA(89, 17, F8, 7) (dual of [17, 8, 8]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.