Information on Result #714825

Linear OA(877, 95, F8, 47) (dual of [95, 18, 48]-code), using construction XX applied to C1 = C([7,46]), C2 = C([0,35]), C3 = C1 + C2 = C([7,35]), and C∩ = C1 ∩ C2 = C([0,46]) based on
  1. linear OA(855, 63, F8, 40) (dual of [63, 8, 41]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {7,8,…,46}, and designed minimum distance d ≥ |I|+1 = 41 [i]
  2. linear OA(848, 63, F8, 36) (dual of [63, 15, 37]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,35], and designed minimum distance d ≥ |I|+1 = 37 [i]
  3. linear OA(858, 63, F8, 47) (dual of [63, 5, 48]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,46], and designed minimum distance d ≥ |I|+1 = 48 [i]
  4. linear OA(843, 63, F8, 29) (dual of [63, 20, 30]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {7,8,…,35}, and designed minimum distance d ≥ |I|+1 = 30 [i]
  5. linear OA(813, 23, F8, 10) (dual of [23, 10, 11]-code), using
  6. linear OA(86, 9, F8, 6) (dual of [9, 3, 7]-code or 9-arc in PG(5,8)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.