Information on Result #714855

Linear OA(879, 94, F8, 53) (dual of [94, 15, 54]-code), using construction XX applied to C1 = C([9,53]), C2 = C([1,44]), C3 = C1 + C2 = C([9,44]), and C∩ = C1 ∩ C2 = C([1,53]) based on
  1. linear OA(855, 63, F8, 45) (dual of [63, 8, 46]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {9,10,…,53}, and designed minimum distance d ≥ |I|+1 = 46 [i]
  2. linear OA(854, 63, F8, 44) (dual of [63, 9, 45]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [1,44], and designed minimum distance d ≥ |I|+1 = 45 [i]
  3. linear OA(859, 63, F8, 53) (dual of [63, 4, 54]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [1,53], and designed minimum distance d ≥ |I|+1 = 54 [i]
  4. linear OA(848, 63, F8, 36) (dual of [63, 15, 37]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {9,10,…,44}, and designed minimum distance d ≥ |I|+1 = 37 [i]
  5. linear OA(810, 17, F8, 8) (dual of [17, 7, 9]-code), using
  6. linear OA(88, 14, F8, 7) (dual of [14, 6, 8]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(879, 94, F8, 52) (dual of [94, 15, 53]-code) [i]Strength Reduction
2Linear OA(877, 92, F8, 51) (dual of [92, 15, 52]-code) [i]Truncation
3Linear OOA(879, 47, F8, 2, 53) (dual of [(47, 2), 15, 54]-NRT-code) [i]OOA Folding