Information on Result #714888

Linear OA(879, 91, F8, 55) (dual of [91, 12, 56]-code), using construction XX applied to C1 = C([9,54]), C2 = C([0,45]), C3 = C1 + C2 = C([9,45]), and C∩ = C1 ∩ C2 = C([0,54]) based on
  1. linear OA(856, 63, F8, 46) (dual of [63, 7, 47]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {9,10,…,54}, and designed minimum distance d ≥ |I|+1 = 47 [i]
  2. linear OA(856, 63, F8, 46) (dual of [63, 7, 47]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,45], and designed minimum distance d ≥ |I|+1 = 47 [i]
  3. linear OA(861, 63, F8, 55) (dual of [63, 2, 56]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,54], and designed minimum distance d ≥ |I|+1 = 56 [i]
  4. linear OA(849, 63, F8, 37) (dual of [63, 14, 38]-code), using the primitive BCH-code C(I) with length 63 = 82−1, defining interval I = {9,10,…,45}, and designed minimum distance d ≥ |I|+1 = 38 [i]
  5. linear OA(89, 14, F8, 8) (dual of [14, 5, 9]-code), using
  6. linear OA(89, 14, F8, 8) (dual of [14, 5, 9]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.