Information on Result #715162
Linear OA(856, 536, F8, 19) (dual of [536, 480, 20]-code), using construction XX applied to C1 = C([56,73]), C2 = C([62,74]), C3 = C1 + C2 = C([62,73]), and C∩ = C1 ∩ C2 = C([56,74]) based on
- linear OA(846, 511, F8, 18) (dual of [511, 465, 19]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {56,57,…,73}, and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(834, 511, F8, 13) (dual of [511, 477, 14]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {62,63,…,74}, and designed minimum distance d ≥ |I|+1 = 14 [i]
- linear OA(849, 511, F8, 19) (dual of [511, 462, 20]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {56,57,…,74}, and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(831, 511, F8, 12) (dual of [511, 480, 13]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {62,63,…,73}, and designed minimum distance d ≥ |I|+1 = 13 [i]
- linear OA(87, 22, F8, 5) (dual of [22, 15, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(87, 57, F8, 5) (dual of [57, 50, 6]-code), using
- linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(856, 268, F8, 2, 19) (dual of [(268, 2), 480, 20]-NRT-code) | [i] | OOA Folding |