Information on Result #715620
Linear OA(886, 536, F8, 30) (dual of [536, 450, 31]-code), using construction XX applied to C1 = C([45,73]), C2 = C([51,74]), C3 = C1 + C2 = C([51,73]), and C∩ = C1 ∩ C2 = C([45,74]) based on
- linear OA(876, 511, F8, 29) (dual of [511, 435, 30]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {45,46,…,73}, and designed minimum distance d ≥ |I|+1 = 30 [i]
- linear OA(864, 511, F8, 24) (dual of [511, 447, 25]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {51,52,…,74}, and designed minimum distance d ≥ |I|+1 = 25 [i]
- linear OA(879, 511, F8, 30) (dual of [511, 432, 31]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {45,46,…,74}, and designed minimum distance d ≥ |I|+1 = 31 [i]
- linear OA(861, 511, F8, 23) (dual of [511, 450, 24]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {51,52,…,73}, and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(87, 22, F8, 5) (dual of [22, 15, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(87, 57, F8, 5) (dual of [57, 50, 6]-code), using
- linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(886, 268, F8, 2, 30) (dual of [(268, 2), 450, 31]-NRT-code) | [i] | OOA Folding |