Information on Result #716060
Linear OA(899, 523, F8, 37) (dual of [523, 424, 38]-code), using construction XX applied to C1 = C([508,32]), C2 = C([0,33]), C3 = C1 + C2 = C([0,32]), and C∩ = C1 ∩ C2 = C([508,33]) based on
- linear OA(894, 511, F8, 36) (dual of [511, 417, 37]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−3,−2,…,32}, and designed minimum distance d ≥ |I|+1 = 37 [i]
- linear OA(888, 511, F8, 34) (dual of [511, 423, 35]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,33], and designed minimum distance d ≥ |I|+1 = 35 [i]
- linear OA(897, 511, F8, 37) (dual of [511, 414, 38]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−3,−2,…,33}, and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(885, 511, F8, 33) (dual of [511, 426, 34]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,32], and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(82, 9, F8, 2) (dual of [9, 7, 3]-code or 9-arc in PG(1,8)), using
- extended Reed–Solomon code RSe(7,8) [i]
- Hamming code H(2,8) [i]
- linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.