Information on Result #716220
Linear OA(8103, 517, F8, 39) (dual of [517, 414, 40]-code), using construction XX applied to C1 = C([510,36]), C2 = C([0,37]), C3 = C1 + C2 = C([0,36]), and C∩ = C1 ∩ C2 = C([510,37]) based on
- linear OA(8100, 511, F8, 38) (dual of [511, 411, 39]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−1,0,…,36}, and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(8100, 511, F8, 38) (dual of [511, 411, 39]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,37], and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(8103, 511, F8, 39) (dual of [511, 408, 40]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−1,0,…,37}, and designed minimum distance d ≥ |I|+1 = 40 [i]
- linear OA(897, 511, F8, 37) (dual of [511, 414, 38]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,36], and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(8103, 258, F8, 2, 39) (dual of [(258, 2), 413, 40]-NRT-code) | [i] | OOA Folding |