Information on Result #716237
Linear OA(8112, 524, F8, 42) (dual of [524, 412, 43]-code), using construction XX applied to C1 = C([33,73]), C2 = C([37,74]), C3 = C1 + C2 = C([37,73]), and C∩ = C1 ∩ C2 = C([33,74]) based on
- linear OA(8106, 511, F8, 41) (dual of [511, 405, 42]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {33,34,…,73}, and designed minimum distance d ≥ |I|+1 = 42 [i]
- linear OA(8100, 511, F8, 38) (dual of [511, 411, 39]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {37,38,…,74}, and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(8109, 511, F8, 42) (dual of [511, 402, 43]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {33,34,…,74}, and designed minimum distance d ≥ |I|+1 = 43 [i]
- linear OA(897, 511, F8, 37) (dual of [511, 414, 38]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {37,38,…,73}, and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(83, 10, F8, 3) (dual of [10, 7, 4]-code or 10-arc in PG(2,8) or 10-cap in PG(2,8)), using
- linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(8112, 262, F8, 2, 42) (dual of [(262, 2), 412, 43]-NRT-code) | [i] | OOA Folding |